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1.Driven torsional oscillator. Equations
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4.Beats

5.Nonlinear effects

6.Comments
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Tacoma (WA) Narrows Bridge Disaster
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Tacoma (WA) Narrows Bridge, 1940
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Tacoma (WA) Narrows Bridge, 1940
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Tacoma (WA) Narrows Bridge, 1940
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Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.   
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Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.   
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“Dancing Bridge” in Volgograd (Russia) (record from 2st May 2010. 4.4 miles 

long).
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In autumn 2011, 12 semi-active tuned mass dampers were installed in 

the bridge. Each one consists of a mass 5,200 kg (11,500 lb), a set of 

compression springs and a magnethoreological damper.
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The goals: (i) analyze the response of the damped driven

harmonic oscillator to a sinusoidal drive. (ii) transient

response and (iii) steady-state solution.
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𝑰 ሷ𝜽 + 𝑲𝜽 + 𝑹 ሶ𝜽 = 𝒎 = 𝑲𝜽𝟎𝐜𝐨𝐬(𝝎𝒕)

𝜽𝟎𝐜𝐨𝐬(𝝎𝒕);

Angular displacement:

torque: 

𝑲λ𝜽𝟎𝐜𝐨𝐬(𝝎𝒕)

Viscous damping

I is momentum of inertia, [kgm2]

R is a damping constant [N⋅m⋅s].  

K is the total spring constant [Nm]

Torque by motor 

𝝀 =
𝑳𝟏

𝑳𝟏 + 𝑳𝟐
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Motor Pendulum



𝑰 ሷ𝜽 + 𝑲𝜽 + 𝑹 ሶ𝜽 = 𝒎 = 𝑲𝜽𝟎𝐜𝐨𝐬(𝝎𝒕)

Solutions:  sum of (1) Transient solution + (2) steady solution due to torque 𝒎
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Iθ+Rθ+Kθ = 0

θ t = Ae cos ω t-

a = R 2I

ω = K I

The homogeneous equation of 

motion

Transient solution

Attenuation constant

Natural (angular) frequency

Damped (angular) frequency

(1) Transient solution (1st week experiment) 
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Transient solution

Initially the system responds on 

the characteristic frequency 1
Once this response dies away in 

time the system response only 

on the frequency of drive 

𝑰 ሷ𝜽 + 𝑲𝜽 + 𝑹 ሶ𝜽 = 𝒎 = 𝑲𝜽𝟎𝐜𝐨𝐬(𝝎𝒕)



𝑰 ሷ𝜽 + 𝑲𝜽 + 𝑹 ሶ𝜽 = 𝒎 = 𝑲𝜽𝟎𝐜𝐨𝐬(𝝎𝒕)

(2) steady solution
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Steady state solution

Amplitude function

Phase function

Damping constant
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time domain form for steady-state solution will be
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Amplitude B()

Phase

General solution for equation of motion consist of the sum of sum of 

two components: (t)  =  t(t)  +  ss(t)

Coefficients A and  could be determined from initial conditions
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Fitting function:
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Regular Residual of Sheet1 pend

 Regular Residual of Sheet1 pend

 Gauss Fit Counts

Model Gauss

Equation y=y0 + (A/(w*sqrt(PI/2)))*exp(-2*((x-xc)/w)^2)

Reduced Chi-S
qr

1.69162

Adj. R-Square 0.89685

Value Standard Error

Counts y0 1.01369 0.67924

Counts xc 6.5432E-4 0.00143

Counts w 0.02399 0.00358

Counts A 0.31875 0.05425

Counts sigma 0.01199

Counts FWHM 0.02824

Counts Height 10.60283

Model Resonance1 (User)

Equation y=A*f0^2/sqrt((f0^2-x^2)^2+x^2*gamma^2)

Reduced Chi-Sqr 3.00E-04

Adj. R-Square 0.999411988

Value Standard Error

pend A 0.286662 0.001663551

pend f0 0.500271 2.14E-04

pend gamma 0.062856 4.98E-04

f0=0.50Hz

(fitting)

To create a new fitting function 

go “Tools”→”Fitting Function 

Builder” or press F8



0.1 1

0

1

2

3


 (

ra
d

)

f
d
 (Hz)

Phase

Scanning the driving frequency we can measure the amplitude of the

pendulum oscillating and the phase shift

Both parameters Amplitude and phase can be 

defined by DAQ program or using Origin
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At resonance =0 0 0
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Combination of high initial

amplitude 0, and high quality

Q or low damping factor a
could be result of the

destruction of the mechanical

system



For correct representation of the resonance curve take 

care about choosing of the step size in frequency.
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There are two parameters used to measure the rate at which the

oscillations of a system are damped out. One parameter is the

logarithmic decrement d, and the other is the quality factor, Q.
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d, is defined by
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It can be shown that Q can

be calculated as 1/ or

f1/f.  is bandwidth of the

resonance curve on the

half power level or for

amplitude graph

max
θ
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Here Q~7.9



Consider sum of two harmonic signals of frequencies 1 and 2

y1=Asin(1t+1);  y2=Bsin(2t+2)

In case A=B y=y1+y2=𝟐𝑨𝒔𝒊𝒏
𝝎𝟏+𝝎𝟐

𝟐
𝒕 + 𝜷𝟏 𝒄𝒐𝒔

𝝎𝟏−𝝎𝟐

𝟐
𝒕 + 𝜷𝟐 ;

𝜷𝟏 =
𝝋𝟏+𝝋𝟐

𝟐
; 𝜷𝟐 =

𝝋𝟏−𝝋𝟐

𝟐

If 1≈2   ≈
𝝎𝟏+𝝎𝟐

𝟐
=        and     

𝝎𝟏−𝝎𝟐

𝟐
=W

y= 𝟐𝑨𝒄𝒐𝒔 W𝒕 + 𝜷𝟐 𝒔𝒊𝒏 𝒕 + 𝜷𝟏
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More general case A≠B  1 and 2

y1=Asin(t);  y2=Bsin((+)t)

y=y1+y2=𝑪𝒔𝒊𝒏(  + )𝒕 where 𝐂 = 𝑨𝟐 + 𝑩𝟐 + 𝟐𝑨𝑩𝒄𝒐𝒔(𝒂𝒕)

𝜷 = 𝒕𝒂𝒏−𝟏
𝑩sin(𝜶𝒕)

𝑨 + 𝑩cos 𝛼𝑡
+ ቊ

𝟎 𝒊𝒇 𝑨 + 𝑩𝒄𝒐𝒔( 𝜶𝒕) ≥ 𝟎

𝝅 𝒊𝒇 𝑨 + 𝑩𝒄𝒐𝒔 𝜶𝒕 < 𝟎
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Time domain trace Beating spectrum 

Use Origin to analyze the frequency spectrum !
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Beats dying in time.

How fast – it depends

on damping. When you

will work on resonance

data – wait until you will

see the steady state

oscillations.
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t(t)→0 This can be seen well from “envelope” plot

Origin 8.6: Analysis → Signal Processing  → Envelope
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First let we apply FFT 

to find 1 and 

Result: =3.1402rad-1 and =2.8298 rad-1
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8 fitting parameters

Result from FFT: =3.1402rad-1 and =2.8298 rad-1

A 0.65012

t0 199.64912

 3.13666

 0.33135

B -0.74076

 2.82464

 -0.87829

C -0.11176

From fitting



FFT

Compare with original 

pendulum spectrum
Pendulum 

Residuals

Possible origin of “extra” peaks:

(i) Nonlinear behavior of 

pendulum

(ii) Not a single frequency driving 

force provided by motor 

(iii) Not ideal fitting function
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t(t)→0

Origin 9.0: Analysis → Signal Processing  → FFT

We also can analyze the decrease of

the amplitude of the 1 component

by analyzing the spectrum as a

function of time
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 3.13666

f1 0.4992 Hz

 2.82464

f2 0.4496 Hz

From fitting

From FFT

f1 0.499 Hz

f2 0.451 Hz
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d~0

In the case of driving frequency fd=f0/2 or fd=f0/3 we can 

observe more complicated motion of the pendulum



This is a combine steady-state response on several 

excitation frequencies and not like beatings will not 

“disappear” in time.  

d~0.50

The beginning of the time record The end of the time record







Detailed analyzes*  shows that 

even if ∅ = ∅𝟎 𝐬𝐢𝐧 𝝎𝒕

the driving torque contains 

several harmonics of 

*P. Debevec (UIUC, Department of Physics)


