Driven lTorsional Osclllator
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Before starting the torsional
oscillator discussion let we take a look
on some historical examples showing

how dangerous the resonance in

mechanical systems can be
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Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge Disaster
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Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940



Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940



Torsional oscillations. Resonance.

Tacoma (WA) Narrows Bridge, 1940



Mechanical Resonance.
Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.
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Mechanical Resonance.
Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.




Mechanical Resonance.
Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.




Torsional oscillations. Resonance.

“Dancing Bridge” in Volgograd (Russia) (record from 25t May 2010. 4.4 miles
long).



Torsional oscillations. Resonance.

In autumn 2011, 12 semi-active tuned mass dampers were installed in
the bridge. Each one consists of a mass 5,200 kg (11,500 |b), a set of
compression springs and a magnethoreological damper.



Torsional oscillations. Flutter. Aviation.

Milestones in Flight History
Dryden Flight Research Center

PA-30 Twin Commanche

April 5, 1966




Driven torsional oscillator

The goals: (i) analyze the response of the damped driven
harmonic oscillator to a sinusoidal drive. (ii) transient
response and (iii) steady-state solution.

M Angular displacement:
motor 0,cos(wt);

torque:

KA@ycos(wt)

__ L
© Ly + L

A

]é + KO + RQ =1, = Kkﬂocos(mt) | is momentum of inertia, [kg-m?]

R is a damping constant [N-m-s].
K is the total spring constant [N-m]

Viscous damping Torque by motor



Driven torsional oscillator

Motor Pendulum

15



Transient solution

10 + KO + RO = t,, = KAOycos(wt)
Solutions: sum of (1) Transient solution + (2) steady solution due to torque t,,

(1) Transient solution (1st week experiment)

IO+RO+KO=0 The homogeneous equation of
motion

o(t)=Ae™cos(w,t-¢)

a=R/2I

o =K/I

o, = o’ - a’

Transient solution
Attenuation constant

Natural (angular) frequency

Damped (angular) frequency



Steady-state solution

6.(t)= ‘A‘ e " cos(wt+¢9) - o = \/ @, —a’ Transient solution

e N A

Initially the system responds on

Once this response dies away in o 1o o creristic frequency o,

time the system response only
on the frequency of drive ®

So the steady-state solution must have the
similar time dependence as the drive

0,,(1) = Re(6(w)e™) 10 + KO + RO = t,, = K).Oycos(wt)

Substituting 6..(t) in equation of motion we will find the equations for é(@)

Aa’ 6, b 2wa
H(m) - 2 2020 ) ¢ o and ,B(a)) = tanl( 2 2]
\/(a)o—a)) +4w°a A, — O



Steady-state solution. Summary.

10 + K@ + RO = t,, = K @ cos(wt)

(2) steady solution

0.(t) = B(w)cos(wt - B(w))

Steady state solution

A0, @
B(@) = 2
\/( (002 — (02) + @° }/2 Amplitude function

()
tan ,B(a)) = 4 Phase function

2 >

O — o

y = B - ZE =2a Damping constant



General solution

time domain form for steady-state solution will be

2
6.(t)= AD, < cos(mt @ )

Phase

Amplitude B(w)

General solution for equation of motion consist of the sum of sum of
two components: o(t) = 0,(t) + 0. (t)

O(t) =6,(t)+8_(t) = Ae™ cos(w,t — @) + B cos(wt — B(w))

Coefficients A and ¢ could be determined from initial conditions



Resonance. Experiment. Amplitude

\ | Fitting function:
1| f=0.50Hz o Aefy
| (fitting) ()= -
[ q .I: 2 _.I: 2 + 21: 2
~ | ‘ 0 /4
_% f o=2xnf; y=2a
1} e A
= I To create a new fitting function
@ go “Tools”—"Fitting Function
el oo Builder” or press F8
0 S ———
. L Regular Residual of Sheetl pend
0.1 1 — Gauss Fit Counts
fd (HZ) 124 Jeum §
Model Resonancel (User) ]
Equation y=A*f0"2/sqrt((f0A2-x"2)A2+x"2*gamma’2) % 6
Reduced Chi-Sqr 3.00E-04) © \
Adj. R-Square 0.999411988 1
Value Standard Error 2-
pend A 0.286662 0.001663551 0' N
pend fO 0.500271 2.14E-04 -0.06 -0.04 -0.02 0.00 0.02 0.04
pend gamma 0.062856 4.98E-04 Regular Residual of Sheetl pend




Resonance. Experiment. Phase

motor

’hase

i I = pendulum

0.1 1 0 2 4
f, (Hz) time (s)

® (rad)
o(rad)

Scanning the driving frequency we can measure the amplitude of the
pendulum oscillating and the phase shift

Both parameters Amplitude and phase can be
defined by DAQ program or using Origin



Resonance.
Amplitude of the Angular Displacement.

A0,
Amplitude j> ‘ess (t)‘ - Oz
\/(a)o2 —o°) +4w*a’
At resonance o=y ‘ (t)‘ — ﬂa)oﬁ =10,0Q

Combination of high initial

amplitude 90, and high guality

Q or low damping factor & /)

could be result of the
destruction of the mechanical
system




Resonance. Experiment. Taking data.

For correct representation of the resonance curve take
care about choosing of the step size in frequency.

E

i

0.05 __ f0=0.495HZ ] actual resonance curve
C : | —m—data points, Af~0.18Hz (51 points)
- | —m— data points, Af variable (34points)
0.04 : : : .
3 003
.13 L
=1
=
< 9.02
» o

10

0.1
Frequency (Hz)



O (rad)

Quality factor and log decrement

There are two parameters used to measure the rate at which the
oscillations of a system are damped out. One parameter is the
logarithmic decrement 6, and the other is the quality factor, Q.

_ _ . o .. ) g M _
8, is defined by o= 111{ 0 +T) ] :111{ ey ] =al].

O(tmaxtT1)
8.49122 - O =1In (849j 0.144

raoadh 6.50472 7.35
N max 5 77
0=27 tota? stored energy -
decrease 1n energy per period
o="4 I N
; RII 2a a2r al, &
o

e M S Q~218

O




Amplitude

Quality factor and log decrement

| |
f,=0.496Hz ﬁ

Af=0.0626Hz

[EEN

i

f (H2)

0.3 04 05 06 0708091

It can be shown that Q can
be calculated as o,/A® or
f,/Af. Ao is bandwidth of the

resonance curve on the
0

half power level or “max  for
‘ J2
amplitude graph
Here Q~7.9



Beats. Theory.

Consider sum of two harmonic signals of frequencies o, and o,

y,=Asin(o,t+e,); y,=Bsin(a,t+e,)

In case A=B y-y1+y2—2Asm( 2t + 31) cos ( 2t + ﬁz);

01102, o _ 910

If 0,~0, =® and
y= 24cos(Qt + By)sin(ot + £4)

w1+w2 wW1—wW?2 —Q

2

ans / AT AT :

[ \\\ / \\\ / \\\ i o= 000278 0, 0.00294

I \ / \ / | \ I
0 \

>
/ /
/N /N !
/LY N
V4 LY LY 1

27 N LY o002t = 00028 00020 0003 00031

o 5IOI0(I) IIIIIII 1I0(I)OIO IIIIIII 1l5(I)OO f (Hz)



Beats. Theory.

More general case A¥B o, and o,

y,=Asin(o,t); y,=Bsin((o,+a)t)

y=Y,+Y,=Csin((o + B)t) where C = /A% + B2 + 2ABcos(at)

8 = tan-1 B sin(at) 0 if A+ Bcos(at) >0
= tan -
A + B cos(at) w if A+ Becos(at) <0
N A AT VA2 + B% + 24B | |
i \ \ \ 100 |
\ // \ / \ : 0= 0.00278 0. 000204
2 2 _ ; i
\ / \T, \VA? + B2 — 2AB |
r"* o J‘*
i \ i \ M :
/N /N /
/ NI LY
JIig {11 {114
(I) IIIIIIII E;OI06 IIIIIII 1IO(I)OIO IIIIIII 1I5(I)0IO o T ooms T o003

time (s) f (Hz)



0(rad)

Beats. Experiment




Beats. Experiment.

O(t)=6,(t)+80_(t) = Ae™ cos(w,t — @) + B cos(wt — B(w))

0t)—0 “Hiii

Beats dying in time.
How fast — it depends
on damping. When you
will work on resonance
data — wait until you will

see the steady state 9L A R N,
oscillations. O | | 200 400 /Q

0(rad)

6(rad)
S
e
o

o(rad)




0(rad)

Beats. Experiment.

O(t)=6,(t)+80_(t) = Ae™ cos(w,t — @) + B cos(wt — B(w))

4-||||||.

O (rad)

o HMMNWV\I\MNWV\WMMWNVW

*°time (s) *° e
0 100 200 300 400 500 600
time (s)
Gt(t)—>0 This can be seen well from “envelope” plot

Origin 8.6: Analysis — Signal Processing — Envelope



Beats. Experiment. Fitting.

O(t)=0.(t)+06_(t) = Ae™ cos(w,t — @) + B cos(awt — f(w))+C

First let we apply FFT
to find o, and ®

b 0.45037
3240 - (0=2.8298)

Magnitude

22 e b e b e L 0.49978
0 100 200 300 400 500 L—M
time (s)

.....................................

0.40 0.45 0.50

Frequency(Hz)

Result: ®,=3.1402rad™?! and ®=2.8298 rad!



Beats. Experiment. Fitting.

8(t) = 6,(t) + 0. (t) = Ae " cos(@,t — @)+ B cos(wt — B(@)) +C

P 8 fitting parameters
1r S ormi7e 3o0eyres From fitting
A 0.65012
to 199.64912
®, 3.13666
b 0.33135
B -0.74076
® 2.82464
_2 ......... | TR R R R R A | I T R R A A | R R R R R A | IR R B S B A 1 4 _
0 100 200 30 400 500 B 0.87829
C -0.11176

time (s)
Result from FFT: ®,=3.1402rad™?! and ®=2.8298 rad™



Beats. Experiment. Fitting. Residuals.

| = Regular Residual of Sheet1

0.2+

0.0

Regular Residual of Sheet1 pend

-0.2 |-

Independent Variable

Compare with original
pendulum spectrum

Possible origin of “extra” peaks:

(i) Nonlinear behavior of
pendulum

(i) Not a single frequency driving
force provided by motor

(iii) Not ideal fitting function

100 [

50 F

0.0z F
0.01 [

0.00 E

120 prorrreer ARSASRRA T 0.50135
a3 0.4975
) 72%-
© E
=
T
o 48[
o
= 0.45122
0.39915 |(0-44736

0.343 0.392 0.441 0.490

Frequency (Hz)



O(rad)

Beats. Experiment.

O(t)=6,(t)+80_(t) = Ae™ cos(w,t — @) + B cos(wt — B(w))

0,(t)—0
We also can analyze the decrease of
°h the amplitude of the ®, component
{ by analyzing the spectrum as a
g function of time
_4_l |
== 200 400 motor | First 55 sec
time (s) 04
I LA = /\ N\
g AL / vj \
R R RS B R v e — ~
First 55 sec Last 55 sec o T P e N e

Last 55 sec
Origin 9.0: Analysis — Signal Processing — FFT
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Beats. Experiment. Fitting.




Beats. RLC Experiment.

V (V)




Beats. RLC Experiment.

Find peaks
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O (rad)

In the case of driving frequency f=f,/2 or f,=f,/3 we can

Harmonics. Experiment.

observe more complicated motion of the pendulum

0.3f

-0.3f

£,=0.245Hz

21,=0.488Hz=f,

Amplitude

[ ) 31,=0.772Hz
0.0 E—— . _—_— . .
0.1 0.2 0.3 0.6 0.7 0.8

0.4 0.5
f (Hz)



Harmonics. Experiment.

This is a combine steady-state response on several
excitation frequencies and not like beatings will not
“disappear” in time.

®4~0.50,
0.3 — /\ /\ [\ 03k {\ /\

: T
Y \/ @ o I
03f \/J [

: 0.3 _—

o P o e 0 oo e e e
time (5) time (5)

The beginning of the time record The end of the time record



Harmonics. Experiment.

510 [

0 (degree)

170 |-

0.0 0.2 0.4 0.6 0.8

f (Hz)

Detailed analyzes* shows that
even if @ = @, sin(wt)
!£ V) ‘\»\ the driving torqye contains
) several harmonics of ®

*P. Debevec (UIUC, Department of Physics)



