UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Driven Torsional Oscillator

Physics 401, Fall 2019 Eugene V. Colla

illinois.edu

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

- **1.Driven torsional oscillator. Equations**
- **2.Setup. Kinematics**
- **3.Resonance**
- 4.Beats
- **5.Nonlinear effects**

6.Comments

Before starting the torsional oscillator discussion let we take a look on some historical examples showing how dangerous the resonance in mechanical systems can be

Tacoma (WA) Narrows Bridge Disaster

Tacoma (WA) Narrows Bridge, 1940

Tacoma (WA) Narrows Bridge, 1940

Tacoma (WA) Narrows Bridge, 1940

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

Mechanical Resonance.

Egyptian Bridge disaster. 20 January1905, St. Petersburg, Russia.

"Dancing Bridge" in Volgograd (Russia) (record from 2st May 2010. 4.4 miles long).

In autumn 2011, 12 semi-active tuned mass dampers were installed in the bridge. Each one consists of a mass 5,200 kg (11,500 lb), a set of compression springs and a magnethoreological damper.

Torsional oscillations. Flutter. Aviation.

Milestones in Flight History Dryden Flight Research Center

PA-30 Twin Commanche Tail Flutter Test

AIRBOYD.TV

April 5, 1966

Driven torsional oscillator

The goals: (i) analyze the response of the damped driven harmonic oscillator to a sinusoidal drive. (ii) transient response and (iii) steady-state solution.

$$\begin{aligned} I\ddot{\theta} + K\theta + R\dot{\theta} &= \tau_m = K\lambda\theta_0 \cos(\omega t) \\ R \text{ is a damping constant [N·m·s].} \\ K \text{ is the total spring constant [N·m]} \end{aligned}$$

$$\begin{aligned} Viscous damping \\ Torque by motor \end{aligned}$$

Driven torsional oscillator

Motor

Pendulum

Transient solution

 $I\ddot{\theta} + K\theta + R\dot{\theta} = \tau_m = K\lambda\theta_0\cos(\omega t)$

Solutions: sum of (1) Transient solution + (2) steady solution due to torque τ_m

(1) Transient solution (1st week experiment)

 $I\ddot{\theta} + R\dot{\theta} + K\theta = 0$ $\theta(t) = Ae^{-at}cos(\omega_{1}t - \phi)$ a = R/2I $\omega_{o} = \sqrt{K/I}$ $\omega_{1} = \sqrt{\omega_{o}^{2} - a^{2}}$ The homogeneous equation of motion

Transient solution

Attenuation constant

Natural (angular) frequency

Damped (angular) frequency

Steady-state solution

$$\theta_t(t) = |A| e^{-at} \cos(\omega_1 t + \phi) \rightarrow \omega_1 = \sqrt{\omega_0^2 - a^2}$$
 Transient solution

Once this response dies away in time the system response only on the frequency of drive ω

Initially the system responds on the characteristic frequency ω₁

So the steady-state solution must have the similar time dependence as the drive

$$_{s}(t) = \operatorname{Re}\left(\theta(\omega)e^{i\omega t}\right) \implies I\ddot{\theta} + K\theta + R\dot{\theta} = \tau_{m} = K\lambda\theta_{0}\cos(\omega t)$$

Substituting $\theta_{ss}(t)$ in equation of motion we will find the equations for $\theta(\omega)$

$$\theta(\omega) = \frac{\lambda \omega_0^2 \theta_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\omega^2 a^2}} e^{-i\beta(\omega)} \quad \text{and} \quad \beta(\omega) = \tan^{-1}\left(\frac{2\omega a}{\omega_0^2 - \omega^2}\right)$$

Steady-state solution. Summary.

$$I\ddot{\theta} + K\theta + R\dot{\theta} = \tau_m = K\lambda\theta_0\cos(\omega t)$$

(2) steady solution

$$\theta_{s}(t) = B(\omega)\cos(\omega t - \beta(\omega))$$
$$B(\omega) = \frac{\lambda \theta_{o} \omega_{o}^{2}}{\sqrt{(\omega_{o}^{2} - \omega^{2})^{2} + \omega^{2} \gamma^{2}}}$$
$$\tan \beta(\omega) = \frac{\omega \gamma}{\omega_{o}^{2} - \omega^{2}}$$

 $\gamma = \frac{R}{I} = 2\frac{R}{2I} = 2a$

Steady state solution

Amplitude function

Phase function

Damping constant

General solution

time domain form for steady-state solution will be

General solution for equation of motion consist of the sum of sum of two components: $\theta(t) = \theta_t(t) + \theta_{ss}(t)$

$$\theta(t) = \theta_t(t) + \theta_{ss}(t) = Ae^{-\alpha t} \cos(\omega_1 t - \phi) + B\cos(\omega t - \beta(\omega))$$

Coefficients A and ϕ could be determined from initial conditions

Resonance. Experiment. Amplitude

Model	Resonance1 (User)			
Equation	y=A*f0^2/sqrt((f0^2-x^2)^2+x^2*gamma^2)			
Reduced Chi-Sqr	3.00E-04			
Adj. R-Square	0.999411988			
		Value	Standard Error	
pend	А	0.286662	0.001663551	
pend	fO	0.500271	2.14E-04	
pend	gamma	0.062856	4.98E-04	

Fitting function:

$$\theta(f) = \frac{A \bullet f_0^2}{\sqrt{\left(f_0^2 - f^2\right)^2 + \gamma^2 f^2}}$$

$$\omega = 2\pi f; \ \gamma = 2a$$

To create a new fitting function go "Tools" \rightarrow "Fitting Function Builder" or press F8

Resonance. Experiment. Phase

Scanning the driving frequency we can measure the amplitude of the pendulum oscillating and the phase shift

Both parameters Amplitude and phase can be defined by DAQ program or using Origin

Resonance. Amplitude of the Angular Displacement.

Amplitude $|\theta_{ss}(t)| = \frac{\lambda \omega_0^2 \theta_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\omega^2 a^2}}$

At resonance $\omega = \omega_0$

$$\left|\theta_{ss}(t)\right| = \frac{\lambda \omega_0 \theta_0}{2a} = \lambda \theta_0 \bullet Q$$

Combination of high initial amplitude θ_0 , and high quality Q or low damping factor a [could be result of the destruction of the mechanical system

Resonance. Experiment. Taking data.

For correct representation of the resonance curve take care about choosing of the step size in frequency.

Quality factor and log decrement

There are two parameters used to measure the rate at which the oscillations of a system are damped out. One parameter is the logarithmic decrement δ , and the other is the quality factor, Q.

$$\delta$$
, is defined by $\delta = \ln \left(\frac{\theta(t_{\max})}{\theta(t_{\max} + T_1)} \right) = \ln \left(\frac{e^{-at_{\max}}}{e^{-a(t_{\max} + T_1)}} \right) = aT_1.$

$$\delta = \ln\left(\frac{8.49}{7.35}\right) \approx 0.144$$

 $Q = 2\pi \frac{\text{total stored energy}}{\text{decrease in energy per period}}$.

$$Q = \frac{\omega_1}{R/I} = \frac{\omega_1}{2a} = \frac{\pi}{a} \frac{\omega_1}{2\pi} = \frac{\pi}{a} \frac{1}{T_1} = \frac{\pi}{\delta}$$

Q ~ 21.8

Quality factor and log decrement

It can be shown that Q can be calculated as $\omega_1/\Delta\omega$ or $f_1/\Delta f$. $\Delta\omega$ is bandwidth of the resonance curve on the half power level or $\frac{\theta_{max}}{\sqrt{2}}$ for amplitude graph

Here **Q~7.9**

Beats. Theory.

Consider sum of two harmonic signals of frequencies ω_1 and ω_2

 $y_1 = Asin(\omega_1 t + \phi_1); y_2 = Bsin(\omega_2 t + \phi_2)$

0.0031

Beats. Theory.

Beats. Experiment

Use Origin to analyze the frequency spectrum !

Beats. Experiment.

Beats. Experiment.

 $\theta(t) = \theta_t(t) + \theta_{ss}(t) = Ae^{-\alpha t} \cos(\omega_1 t - \phi) + B\cos(\omega t - \beta(\omega))$

 $\theta_t(t) \rightarrow 0$ This can be seen well from "envelope" plot

Origin 8.6: Analysis \rightarrow Signal Processing \rightarrow Envelope

Beats. Experiment. Fitting.

 $\theta(t) = \theta_t(t) + \theta_{ss}(t) = Ae^{-\alpha t}\cos(\omega_1 t - \phi) + B\cos(\omega t - \beta(\omega)) + C$

Result: ω_1 =3.1402rad⁻¹ and ω =2.8298 rad⁻¹

Beats. Experiment. Fitting.

$\theta(t) = \theta_t(t) + \theta_{ss}(t) = Ae^{-\frac{1}{t_0}}\cos(\omega_1 t - \phi) + B\cos(\omega t - \beta(\omega)) + C$

Result from FFT: ω_1 =3.1402rad⁻¹ and ω =2.8298 rad⁻¹

Beats. Experiment. Fitting. Residuals.

Beats. Experiment.

 $\theta(t) = \theta_t(t) + \theta_{ss}(t) = Ae^{-at}\cos(\omega_1 t - \phi) + B\cos(\omega t - \beta(\omega))$

Origin 9.0: Analysis \rightarrow Signal Processing \rightarrow FFT

Beats. Experiment. Fitting.

From fitting

ω ₁	3.13666		
f1	0.4992 Hz		
ω	2.82464		
f2	0.4496 Hz		

From FFT				
f1	0.499	Hz		
f2	0 451	LI-,		
	0.431	TZ		

Beats. RLC Experiment.

Beats. RLC Experiment.

Harmonics. Experiment.

In the case of driving frequency $f_d = f_0/2$ or $f_d = f_0/3$ we can observe more complicated motion of the pendulum

Harmonics. Experiment.

This is a combine steady-state response on several excitation frequencies and not like beatings will not "disappear" in time.

ω_d~0.5ω₀

The beginning of the time record

The end of the time record

Harmonics. Experiment.

Detailed analyzes^{*} shows that even if $\phi = \phi_0 \sin(\omega t)$ the driving torque contains several harmonics of ω

*P. Debevec (UIUC, Department of Physics)